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Abstract
We describe a novel global optimization technique which utilizes global minima
basins of attraction in order to quickly converge to a global minima. A key to the
proposed method is the “steeper goes deeper” heuristic: coupling between magni-
tudes of gradients on different level sets of a basin of attraction and the depth of its
minima. Local minima are avoided with a combination of local optimization and a
heuristic-based leaping step. Gradient surfing performance is evaluated across a set
of small-scale problems from the literature, and results are compared to those of 12
previously published methods. A practical six-dimensional non-convex image regis-
tration application is presented as well, where GS performance exceeds that of classic
global optimization methods in both speed and accuracy. Additionally, we validate
the optimization method by applying a new Gaussian mixture model benchmark for
non-convex function. Finally, the “steeper goes deeper” heuristic is validated empiri-
cally on five different classes of non-convex functions using two different evaluation
approaches. In all cases, steeper gradients are shown to lead to deeper optima with a
high probability.
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1 Introduction

Optimization, the process of obtaining the minimum of some general cost function
(also termed loss, objective, fitness, or energy function), is a key to many scientific
and technological developments, tools, and applications: from machine learning (e.g.,
optimization of model parameters [1]) and computer vision (e.g., image transformation
and curve completion [2–4]), to economics (e.g., minimize cost, maximize revenue
[5]), chemistry (e.g., chemical reaction paths [6,7]), physical sciences (e.g., energy
minimization [8,9]), geophysics (e.g., seismic signals estimation [10]), biology (e.g.,
protein folding [11]), industrial engineering (e.g., warehouse maintenance, optimal
transportation [12]) and many more. The need to find the best set of parameters that
optimize the performance of a system is in many cases an essential ingredient of the
computation.

With the consistent improvement in computational power, global optimization
research has seen significant advancement in recent decades while an increasing num-
ber of approaches have been proposed [13–15]. Among the various approaches, we
refer in particular to a set of methods that share common ground with ours. The Tun-
neling-based method, first introduced in [16] and further elaborated in [10,17–19], is a
deterministic and iterative global optimization method, where each iteration consists
of two phases: a local minimization phase that decreases the current value of the func-
tion until a local minimum is found, and a tunneling phase that seeks a point that differs
from the current local minimum, such that when the new point is employed as starting
point for the next minimization phase, the new obtained local minimum will have a
function value no greater than the previous local minimum found. In a way, in our GS
method, we used the tunneling idea of dividing each iteration into two phases: a local
minimization phase and a global search phase. However, we significantly differ in our
approach for dimensions higher than 1: While in the tunneling method the scanning
has no explicit defined direction or procedure for propagation, thus having the same
difficulty as the original minimization problem [20], in the GS method we apply the
global search phase on the level sets of the objective function, a readily accessible
structure, by using a well-defined level set scanning procedure.

Other relevant approaches that enabled explicit leaping between the different basins
of attraction are the taboo [21] and simulated annealing [22] approaches, further elab-
orated in [23,24]. In taboo search, when no local move can offer improvement in the
cost function, a leap to a random nearby neighboring point that exacerbates the cost
is allowed as long as that point is not in some list of prohibited (taboo) points. In
simulated annealing, such leaps to a neighboring point, selected by applying a small
random change to the current point, are performed probabilistically and controlled by
the annealing procedure.

Of special importance is the family of optimization tools based on the gradient
descent (GD) approach whose simplicity and accessibility have made it one of the
most common methods for optimization [20]. However, GD, in its simplest form,
relies on the convexity of the function to be minimized, i.e., that the function has
only one minimum or that the initial guess is always placed in the convex basin of
attraction of the global minimum. This convexity condition, or the ability to make a
“proper” initial guess, rarely applies to the systems of interest, thus requiring extended
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schemes built on top of GD, either deterministic (e.g., trust [10], branch-and-bound
methods [25], dynamic tunneling [17]) or stochastic (e.g., simulated annealing [26],
taboo search [21]). In a recent publication, the gradient descent approach is utilized
for a basin-of-attraction-based Function Modification, where in order to escape from
the basin of attraction of a local minimum, a suitable Gaussian-based filling modified
function is constructed [20].

While numerous global optimization methods are founded on the concept of sequen-
tially improving the local optima found, in this paper we present a novel heuristic that
can prevent existing descent methods to find a local optima in the first place. The GS
method is a new deterministic global optimization method that can be easily embedded
to a variety of frameworks and applications, with no additional knowledge on the cost
function except the ability to evaluate (analytically or numerically) its value and its
gradient at arbitrary points.

In this paper, the GS algorithm is applied to a set of small-scale problems from the
literature [10,17,21,27] and the numerical results are reported alongside previously
obtained results with 12 other methods for comparison. A new proposed non-convex
benchmarks, together with a six-dimensional non-convex image registration appli-
cation, are presented, and the GS results are compared to commonly used classical
global optimization methods: simulated annealing (SA) [28], particle swarm opti-
mization (PSO) [29,30], and genetic algorithm (GA) [31–33] (Sect. 4). Addition to
the extensive empirical analysis presented in this paper, we believe that the novel
“steeper goes deeper” heuristic introduced in this paper has the capacity to open a new
path of research in the community and provide an alternative minimization procedure.
In Sect. 2, the heuristic is exemplified and validated on 5 different general common
classes of non-convex functions using 2 different evaluation approaches.

The Intuition Behind the GS Method The GS method combines two concepts—a
standard gradient descent step that locallyminimizes the function value, and a “leaping
step” that changes the current search point to a different point in the search space where
getting trapped in a local minimum is less likely.

Fundamental to our new proposal is a new leaping approach that is performed deter-
ministically on the level set of the object function. The use of this readily accessible
structure of the objective function, defined as the collection of points in the search
space that map to the same value of the cost function, is best described by the follow-
ing analogy (Fig. 1): Consider standing somewhere on a mountain range (red dot in
Fig. 1), looking to find the lowest valley in a given area. Standard gradient descent
method leads downhill by choosing the direction of progression as the direction of
steepest descent at each point. This strategy might converge to a local valley; this
strongly depends on the location of the starting point (see dashed red trajectory in
Fig. 1). Our new method suggests that instead of descending from the current point,
first “hike” the level set of the mountain and look for the point with the steepest slope
(black dot on the white contour in Fig. 1), and only then continue to descend from that
point. Assuming that the mountain range is smooth enough (i.e., has no abrupt cliffs),
this hiking strategy has much better chances to penetrate deeper into the landscape
and thus ending up in the lowest valley (see Sect. 3). This outcome is even more likely
if the hiking of level sets is repeated at different (or even all) heights.
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Fig. 1 Gradient surfing (GS) versus gradient descent (GD) on a non-convex function. If optimization begins
from the red dot, GD will follow the dashed red line to a local minimum. However, first surfing along the
dot’s level set (colored in white), a point with even steeper descent (black point) will allow the same GD
procedure to reach the global minimum. Note that GS will allow successful global optimization from any
initial point along the white level set, while GD will only do so from a fraction of that level set (marked
with dashed gray)

In energy function terms, scanning the level set has zero cost (since all points along
the level set have equal energy value). Still, the extended optimization trajectory that
seeks steepest descent direction among all points along a level set rather than at a single
point (as in GD) is likely to yield a much better solution, perhaps even the global one,
as is indeed the case in Fig. 1. Since leaping across the energy landscape and seeking
better gradients is done without changing height, we dub the entire scheme Gradient
Surfing (GS). In the rest of the paper, we first build the case for the underlying leaping
heuristic. We then formally describe the GS algorithm in 2D, followed by proper
approximations in arbitrary dimensions. We finish by demonstrating the power of the
method using three benchmarks, one based on a set of standard test functions, one
based on a set of Gaussian mixture models (GMM), and finally when applied to an
image processing application.

2 The “Steeper Goes Deeper” Heuristic

As described informally above, the proposed GS method is based on seeking a point
of greatest gradient magnitude among all points of the level set so the descent can
continue from there and possibly escape local minima. Implicitly, then, this approach
assumes that steeper gradients could easily lead to deeper points on the cost function
terrain. In this section, we formalize this heuristic and explore the extend to which it
is valid.

Recall that a basin of attraction (BOA) is the set of points in the search space such
that any initial point p chosen in this set dynamically evolves with GD to a particular
local minimum attractor, denoted by GD(p). Each local minimum (and thus the global
one also) has a unique BOA associated with it, and all these BOAs are disjoint. BOAs
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Fig. 2 The “steeper goes deeper” heuristic exemplified. This GMM is a 1D non-convex function with one
global minima (that is part of the global BOA) and one local minima (in local BOA). Vertical dotted lines
mark BOA’s boundary and horizontal lines depict different level sets. On each level set li that is shared
by both BOAs, red points belonging to the global BOA (red) have larger gradient than the corresponding
blue points in the local BOA. If one is able to scan level sets to traverse BOAs, points with greater gradient
may represent a more promising condition for local optimization procedure such as GD to converge to the
global minimum

that contain global minima will be called global BOAs, while all others are local BOAs.
With these notions in mind, our heuristic can be spelled out as follows:

The “steeper goes deeper” heuristic: BOAs with deeper associated minima
are more likely to have larger gradient magnitudes at any given level set of the
function.

Note that this heuristic is not phrased in terms of the distribution of gradients in entire
BOAs, and rather restricted to individual level sets of the objective function. The
reason is twofold. First, “deeper,” the goal of optimization, is a relative term and the
level set provides an explicit reference “height” for comparison. Second, and more
operationally, in many cases level sets allow to leap between BOAs.

The proposed “steeper goes deeper” heuristics clearly is true in certain common
cases. Consider, for example, a Gaussian mixture models (GMM) of two 1D Gaussians
with similar standard deviation but different amplitude as shown in Fig. 2. Clearly, the
heuristics is valid for level set l1 that goes through the local minimum, as the gradient
vanishes at the local minimum but not for the corresponding points on l1 that belong
in the global BOA. For continuity arguments, the heuristics is valid for level sets close
to l1 and, in fact, it is valid for numerous cases even for such GMM with different
standard deviation (see “Appendix A”).

The example just discussed also illustrates why no function can violate the “steeper
goes deeper” heuristic at all level sets simultaneously, but it is quite clear that an
adversary can construct functions where it is invalid in a (perhaps even large) subset
of level sets . The utility of this heuristic is thus highly related to how ubiquitous it is in
practice, a question that is primarily empirical and possibly dependent on the domain
of functions of interest. We thus set to explore this issue in various ways as described
below (and also “Appendix A”).

Empirically, testing the validity of our heuristic can be done in a rather explicit
fashion, by exploring the relationship between the magnitude of gradient at a point p
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and how deep one would get by locally optimizing with GD from that point. Let us
denote these two functions by ||∇ f (p)|| and Ψ (p), respectively, where the latter is
defined as

Ψ (p) = f (p) − f (GD(p)),

where f is the objective function and GD(p), as defined above, is the local minimum
associated with the BOA of p. If our heuristic is sound, the greater ||∇ f (p)|| is, so
does Ψ (p) should be (or vice versa), and thus testing this correlation for a large number
of points for a large collection of objective functions of interest can validate or refute
the utility of the heuristic. One way of testing this correlation is to collect numerous
〈Ψ (p), ||∇ f (p)||〉 pairs from each level set of every test function, fit regression lines,
and examine their slopes. Positive slopes would support the heuristic, while negative
slopes would weaken it.

We performed the test above on several classes of non-convex functions. Perhaps,
the most common one often used in science and engineering is general GMMs defined
as the sum of arbitrary number of Gaussians in a predefined dimension. Here, we first
explored the validity of the “steeper goes deeper” heuristic for 2D GMMs by creating
a set of such GMMs functions, each being a sum of 10 Gaussians whose mean is a
uniform random variable in the nominal domain [−1, 1]×[−1, 1], while their standard
variation is another uniform random variable in the interval σ ∈ [0.2, 0.3]. Each of
these GMMs was non-convex with an average number of 4 local minima in the domain,
and to simplify exploration of level sets we normalized all of the obtained functions to
[0, 100]. Testing for correlation of many 〈Ψ (p), ||∇ f (p)||〉 pairs taken from 5 different
level sets {20, 30, 40, 60, 80} of such GMMs, we found that 81% of the regression
lines exhibited positive slopes distributed compared to only 17% negative slopes, as
shown in Fig. 3A.

Other classes of functions tested similar to the above-included higher dimension
GMMs, trigonometric functions, and a mixture model of trigonometric functions and
polynomials. While the details are in “Appendix A,” in all cases we clearly find that the
“steeper goes deeper” heuristic is significantly more often valid than not (see Fig. 3),
paving the way for the type of global optimization algorithms discussed in the next
section.

3 The Gradient SurfingMethod

The description of the proposed GS method based on the “steeper goes deeper” heuris-
tic is presented in the following sections, first for the two-dimensional case and then
for higher dimensions.

3.1 Formulation: 2D Gradient Surfing

Before addressing optimization in arbitrarily large dimensions, we first limit ourselves
to two-dimensional functions, where common benchmarks are available. Toward that
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end, we define the unconstrained global optimization problem as follows:

P∗ = argmin
P=(p1,p2)

f (P) : Ω ⊂ IR2 → IR, (1)

where f is the function to be optimized and Ω is the (typically compact) set of all
feasible solutions. Since maximization of f is equivalent to minimizing − f , we limit
our discussion to the problem of minimization. We now combine the gradient descent
(GD) and level set surfing concepts into the gradient surfing (GS) iterative global
optimization scheme, where each iteration consists of two steps:

(a) A local minimization step that decreases the current value of the function at iter-
ation i such that f (Pi) < f (Pi−1). This is done by a standard gradient descent
step

Pi = Pi−1 + α · ∇ f (Pi−1), (2)

where α is the GD step size and Pi , Pi−1 ∈ Ω ⊂ IR2. GD can of course be
substituted by more elaborate or higher-order descent steps.

(b) A level set surfing step that seeks a point Si ∈ Ω on the same level set of Pi

(i.e., f (Si ) = f (Pi )) with the maximal gradient magnitude. To do so, the surfing
starting point is initialized as

S0
i = Pi (3)

and is updated according to:

S j+1
i = S j

i + β · V j
i , (4)

where β is the surfing step size and V j
i is tangent to the level set curve (or perpen-

dicular to the gradient, i.e., V j
i · ∇ f (S j

i ) = 0)

V j
i =

(
−∂ f (S j

i )

∂ p2
,
∂ f (S j

i )

∂ p1

)
. (5)

Since by construction we have f (S j+1
i ) = f (S j

i ), the surfing essentially scans the
level set and continues until satisfying a stopping criteria that can be a combination
of domain-related terms (such as hitting the boundaries of the search domain Ω),
time-related terms (e.g., number of function evaluations), or a circularity term (i.e.,
search is terminated once we return to the initial starting point). When the level
set scanning is completed, we set

Si = argmax
S∈

{
S j
i : j=0,1,...

} ||∇ f (S)|| (6)

and Si then becomes the starting point for the next local minimization step.

The stopping criteria of the minimization step (and thus of the optimization as a whole)
are the standard GD criteria. Algorithm 1 sketches in pseudo code the details of this
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procedure while its stability, and the significance of the α and β constants are studied
in Sect. 4.4.

Algorithm 1 2D Surfing Method

Input: f : Ω ⊂ IR2 → IR, P0
i ← 0
repeat

i ← i + 1
Pi ← Pi−1 + α · ∇ f (Pi−1) % GD step.
S0
i ← Pi
j ← 0
repeat % Surfing

S j+1
i ← S j

i + β · V j
i

j ← j + 1
Si ← argmax

S∈
{
S j
i : j=0,1,...

}||∇ f (S)||

until {Level set surfing termination conditions}
until {Termination conditions for GD method are satisfied}
P∗ ← Pi

3.2 Formulation: Higher-Dimensional Gradient Surfing

The high-dimensional unconstrained global optimization problem is the extension of
Eq. 1 to IRn , i.e.,

P∗ = argmin
P=(p1,p2,...pn)

f (P) : Ω ⊂ IRn → IR. (7)

While pursuing GS as a solution method, the extension of the minimization step from
Sect. 3.1 to higher dimensions is the trivial extension of GD from Eq. 2, i.e.,

Pi = Pi−1 + α · ∇ f (Pi−1), (8)

where this time Pi , Pi−1 ∈ Ω ⊂ IRn . However, the rest of the formulation from
Sect. 2 cannot be trivially extended to higher dimensions since it is based on “surfing”
along a level set. In higher dimensions, a level set is an N -dimensional manifold that
is neither linearly nor cyclically ordered to facilitate its surfing, at least not easily so.1

In what follows, we suggest two schemes for addressing this issue.

3.3 Iterative Parameters

One possible way to extend GS to multivariate cost functions f with n > 2 parameters
is to iteratively fix n−2 parameters and apply the 2D surfing method for the projection

1 One could, in theory, employed space filling curves [34] to scan higher-order manifolds systematically.
Clearly, such an approach is not likely to produce a practical extension of our proposed optimization scheme
to higher dimensions and thus we exclude it.
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of f spanned by the two free parameters pk and pm . This step can be repeated until each
parameter participates in at least one 2D projection, or more systematically until all
pairs of parameters are selected. Algorithm 2 summarizes this optimization approach
in pseudo code.

Algorithm 2 Iterative parameters
Input: f : IRn → IR, P0
repeat

– Choose 2 out of n parameters (pk and pm )
– Hold the other n − 2 parameters fix
– Estimate and update pk and pm according to Algorithm 1

until {Termination conditions for GD method are satisfied}

3.4 Recursive Approach

As we attempt to expand the gradient surfing to higher dimensions, we could also
leverage recursion in order to progressively reduce the dimensionality of the problem.
Recall that as in the 2D case, we seek a point Si ∈ Ω on level set Ls that has the
maximal gradient magnitude. This surfing operation can be formulated as a constrained
optimization problem

Si = argmax
P∈Ω⊂IRn

||∇ f (P)||

with f (Si) = Ls .

(9)

Since f and ∇( f ) are of dimension n, the constraint over the function value Ls

effectively decreases the dimension of optimization to (n−1). In other words, gradient
surfing on the level set of a n-dimensional function amounts to optimizing (in this case,
maximizing) a different (n − 1)-dimensional function.

Applying this observation recursively, we can continue to decrease the dimension-
ality of the problem until the base level of dimension 2, for which the algorithm from
Sect. 3.1 is applicable. Algorithm 3 describes this operation in pseudo code. A detailed
algorithmic description is attached in “Appendix B”).

Algorithm 3 Recursive Gradient Surfing (RGS)
Input: f : IRn → IR, P0
function RGS

1. If n = 2 apply Algorithm 1, return.
2. Otherwise

(a) Decrease the dimensionality by setting fn−1 ← −‖∇ fn‖2

(b) RGS ( fn−1,(p1, p2, . . . , pn−1))
(c) Estimate the parameter pn using the function value constraint

end RGS
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4 Numerical Evaluation

We demonstrate the performance of the proposed GS optimization method using a set
of standard test functions and through an image processing application. The following
subsections present these results.

4.1 Standard Benchmark Analysis

We first tested the GS method over a set of non-convex standard benchmark functions
listed in Table 1 (cf. Cvijovic et al.. [21], Barhen et al.. [10] and Appendix, Fig. 9).
The measure for comparison between the different methods is the number of objective
function evaluations until the global optimum is obtained (achievement of 1% accuracy
from the global minimum is considered as a suitable termination condition) or if
the termination condition (in terms of a number of evaluations) has been met. For
each test function, we report the averages measured from 100 independent runs, each
initialized with a random initial guess. For all functions except H3, we used the 2D
GS method described in Sect. 3.1. GS results for the H3 function, the only three-
dimensional function in the standard benchmark, are shown for both the recursive
approach and the iterative parameters approach. In all cases, including the evaluations
in the following sections, we fixed the two parameters at α = 0.1, β = 0.1. The
code for the GS method, as well as our comparison code, is available publicly for
the benefit of the community (http://icvl.cs.bgu.ac.il/gradient-surfing/). Although the
GS method is based on the “steeper goes deeper” heuristic and does not guarantees
convergence to the global optimum, 84% of the runs were successful in completing this
task, showcasing the method reliability (denoted as success rate (SR) in Table 1). For
each test function, the GS measure presented in Table 1 includes all 100 experiments,
including the ones that did not convergence to the global optimum. Results in table
indicate that the GS approach is clearly competitive and often outperforms the existing
methods.

4.2 Application Benchmark—Optimization for Image Registration

It is always important to evaluate the effectiveness of a method in real-life practical
application. To do so, we selected the problem of image registration, i.e., the process
of matching a source image to a target image. Such registration is needed when the
same scene is imaged from different cameras (or sensors), different viewpoints, times,
distances, etc., [40–42], and it is a fundamental computation in computer vision, med-
ical imaging, remote sensing, astrophotography, and numerous other fields. Although
the registration objective functions are typically highly non-convex, to date, standard
local optimization techniques are frequently used [40]. It is therefore constructive to
examine how a new global optimization approach can perform on this challenge.

The registration problem is formulated as follows: Consider a source and target
monochromatic images, each defined as I : Ω ⊆ IR2 → IR that maps every
coordinate in a given (typically compact) domain Ω to pixel values in the range
[0, 1]. Let AP : Ω → Ω denote an affine registration transformation that maps every
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coordinate in the source image to a coordinate in the target image, and we seek to
find the transformation that best matches the values of all mapped points. While the
presented method is not restricted to any specific choice, for our empirical evaluation
we used the popular L2 norm as the cost function f . More formally, the cost function
is defined by:

f =
∑
x

∑
y

‖Target(x, y) − Source(AP(x, y))‖2 , (10)

where P represents all possible parameters of the affine transformation A and AP is
defined in homogeneous coordinates as

AP(x, y) =
⎡
⎣a b th
c d tv
0 0 1

⎤
⎦ , (11)

where the four parameters (a, b, c, d) correspond to scaling, shearing, and rotation and
(th, tv) correspond to the horizontal and vertical translation. Ignoring sampling, quan-
tization, and noise issues at this point, the globally minimum value of the cost function
is zero and is obtained when the deformed source image has undergone a perfect trans-
formation and the two images are fully aligned. We evaluated the performance of our
GS optimization for the purpose of the registration task above using a random set of
100 natural images selected from five different classes (people, room, natural, space,
and car) from the ImageNet dataset [43] that has been widely used for the evaluation
of various computer vision tasks. The evaluation process included generating pairs of
source and target images, where the latter is a random affine-transformed version of
the former based on randomly selecting the 6 parameters of the transformation. The
goal was to recover this transformation by globally minimizing the six-dimensional
Eq. 10. To do so, we applied the iterative parameters GS method (Sect. 3.3) after
initializing the optimization from a random starting points. This process was repeated
3 times for each image pair (i.e., for each unknown transformation), and the obtained
registration was evaluated by applying it to the source image and comparing against
the ground truth target image (Eq. 10).

We compared the performance of the GS method with 3 classical global optimiza-
tion methods:2 Simulated annealing (SA) [28], particle swarm optimization (PSO)
[29,30], and genetic algorithm (GA) [31–33]. To ensure the fairness of the compar-
ison, all methods were initialized with the same (random) starting points and were
implemented using the default parameters supplied by MATLAB 2016 Global Opti-
mization Toolbox while setting the two parameters required by GS to the default values
α = β = 0.1 (i.e., no effort to optimize these values was attempted).

To perform an equal-ground comparison when it comes to computational resources,
all methods were forced to terminate and report their best result after a predefined
number of cost function evaluations. More specifically, we checked how well did the

2 Unlike other methods from Table 1, these methods were now selected for comparison due to their frequent
use in various applications, ubiquitous and standard implementations, code availability, and their superiority
to other both local and global optimization methods in locating the global minimum [44].
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Fig. 4 Histogram of relative cost function error of our gradient surfing (GS) method in comparison with
3 different classical global optimization methods and to the local optimization GD method (whose results
are mostly outside the selected range of relative errors)

classical optimization methods do when forced to terminate after the same number of
evaluations it took our method to converge. The GS method detected the true global
minimum in 41% of the experiments, while the classical GA, SA, and PSO methods
detected it in only 2%, 1%, and 25% of the experiments, respectively (see Fig. 4).

When all methods were allowed to iterate until convergence, the GA and SA meth-
ods improved their detection rate to 25% and 13%, for a computational overhead that
required 8 and 2 times more function evaluations than our GS solver, respectively.
Only the PSO method performed better than the GS method, achieving 65% detection
rate for a computational overhead of 2.

Interestingly, using the same step size (α = 0.1) and the same initial guesses, GD
obtained the global minimum in none of the trials, showing unequivocally the benefit
of the leaping phase and the utility (as well as plausibility) of the “steeper goes deeper”
heuristic for real-life non-convex problems.

4.3 GaussianMixture Model Benchmark

To further validate the proposed optimization method, we used a different set of non-
convex functions in order to evaluate its performance. One important class of functions
with much relevance for scientific work is the GMMs mentioned in Sect. 2, where
the objective function is a sum of many multi-dimensional Gaussians, normalized to
the range [0,100]. Evidence for successfully locating global minima on GMMs is of
particular interest, given the great importance of GMMs for both basic and applicative
research [45–47]. To use GMMs for the evaluation of global optimization techniques,
we generated a large set of functions by pre-computing 100 3D GMM functions (as
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Fig. 5 Accuracy and efficiency for the three-dimensional GMM benchmark by our GS method versus three
other commonly used classical global optimization methods. a Histogram of minima obtained when all
methods continue to iterate until convergence. b Histogram of number of function evaluations for each
method. c Histogram of minima obtained when all methods are restricted to the same computational effort.
d Average minima and STD when all methods continue to iterate until convergence. e Average minima and
STD when all methods are restricted to the same computational effort

mentioned in Sect. 2 and detailed in “Appendix A”) and compared the minimal value
obtained by applying our GS method. All other implementation and evaluation details
were identical to Sect. 4.2.

Results indicate that the average of the minima obtained was 32 (STD = 27) for our
proposed GS method, and 50 (STD = 30), 43 (STD = 29), and 75 (STD = 26) for the
PSO, GA, and SA methods, respectively. Moreover, simply counting the number of
cases where each method yields better result (i.e., deeper minima) than the competitors,
we found that our proposed method outperformed PSO, GA, and SA in 68%, 63%,
and 90% of trials, respectively.

Importantly, while the GS method outperforms other global optimization methods
in terms of accuracy (minima obtained), it also requires significantly fewer function
evaluations. The average number of function evaluations was 1100, 6700, and 1520
for the PSO, GA , and SA methods, respectively, but only 760 for ours.

While performing an equal-ground test as before, the PSO, GA, and SA methods
produced an average minima of 75 (STD = 26), 83 (STD = 23), and 85 (STD = 22),
respectively. While counting the number of cases where each method yields more
accurate result, we found that our proposed method outperformed PSO, GA, and
SA in 84%, 94%, and 90% of trials, respectively. Figure 5 presents the distribution
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Fig. 6 Accuracy and efficiency for the GS method with different parameters. a Minima obtained with
different α and β parameters. b Number of function evaluations with different α and β parameters

of accuracy and number of function evaluations from the three-dimensional GMM
benchmark experiments.

4.4 Stability Analysis

In order to evaluate GS robustness to changes in parameter values, we ran 100 exper-
iments using α and β with 3 different orders of magnitude ({0.001, 0.01, 0.1}) over a
subset of GMM functions (cf. Sect. 2). To ensure the fairness of the comparison, each
test was initialized with the same (random) starting points for every pair of parame-
ters. While the results indicate the method to be stable for all α and β tested values
in terms of accuracy (Fig. 6a), the computational resources required for detecting the
global minima naturally increase when the step size values decreased. Since the level
set search requires multiple function evaluation after every local minimization step,
lower β values have greater influence on the required computational cost compared to
lower α values (Fig. 6b). β values larger than 0.1 caused observable deviations from
the level set during surfing.

5 Conclusions

In this work, we introduced the “steeper goes deeper” heuristic, implying that on each
level set, greater gradients commonly point on a deeper minima; we verify this via
numerous empirical experiments. Based on the proposed heuristic, we present a novel
yet simple and efficient deterministic approach for multivariate global optimization.
The proposed optimization method consists of two steps: a minimization step that
locally minimizes the function value, and a leaping step that changes the current
search point to a different point in the search space, chosen heuristically. We claim
that moving in the new point direction decreases the probability of getting trapped in
a local minimum.

We tested the proposed GS method performance and efficiency on a standard bench-
mark to find that, on the majority of cases, the GS usually outperforms other classical
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methods in locating the global minimum while requiring less computational effort
(measured by number of objective function evaluations). The generality and simplic-
ity of the GS method and its advantage over the GD local optimization make it suitable
to be adapted and integrated in numerous computational problems. While applying
our method to an increased dimension registration problem, we found the results to
be very satisfactory, applying it to larger-scale problems is left to future work.

Appendices

Appendix A: Soundness of the Heuristic

As described in Sect. 2, we empirically tested the soundness of our “steeper goes
deeper” heuristic for several different families of non-convex functions, including
2D, 3D, and 4D GMMs, trigonometric and a mixture model of trigonometric and
polynomial function families. This appendix provides additional details about these
functions and results not reported in the main text.

The GMMs used for our tests included mixtures of 10 Gaussians in dimension
n ∈ {2, 3, 4}.

G(x) =
10∑
i=1

ωi · gi (x). (12)

In the 1D case, each component is defined as

gi (x) = e
− (x−μi )

2

2·σ2
i , (13)

where μi is selected randomly in the range of [−1, 1], ωi is selected randomly in the
range of [0, 1], and σi is a uniform random variable in the interval σi ∈ [0.2, 0.3]. In
the multi-dimensional case, each Gaussian is defined by

gi (x) = e− 1
2 ·(xi−µi)

T Σ−1
i (xi−µi), (14)

where Σ is the diagonal covariance matrix, µi is the nth-dimensional mean, and their
scalar components are selected randomly as in the univariate case. One such non-
convex function is shown in Fig. 7a.

A next class tested included trigonometric functions of the following form:

10∑
n=1

sin(2 · π · φn · x) + cos(2 · π · φn · y), (15)

where φn is a frequency selected randomly in the range of [0, 0.1] and the domain is
defined as 0 < x, y < 50. One such non-convex trigonometric function is shown in
Fig. 7b.

123



872 Journal of Optimization Theory and Applications (2019) 180:855–878

Fi
g.
7

Ty
pi

ca
le

xa
m

pl
es

fr
om

ou
r

cl
as

se
s

of
ev

al
ua

tio
n

fu
nc

tio
ns

.a
A

2D
G

M
M

fr
om

ou
r

se
t.
b

A
T

ri
go

no
m

et
ri

c
no

n-
co

nv
ex

fu
nc

tio
n

fr
om

ou
r

se
t.
c

A
m

ix
tu

re
m

od
el

of
th

e
tr

ig
on

om
et

ri
c

an
d

po
ly

no
m

ia
ls

no
n-

co
nv

ex
fu

nc
tio

n
fr

om
ou

r
se

t

123



Journal of Optimization Theory and Applications (2019) 180:855–878 873

The last type of functions tested was a mixture model of trigonometric and fourth-
order polynomial functions defined as follows:

10∑
n=1

sin(2 · π · φn · x) + cos(2 · π · φn · y) + a4 · x4 + a3 · x3 − a2 · x2 + a1 · x, (16)

where a1 and a2 were selected randomly in the range of [0, 1], a3 and a4 selected
randomly in the range of [0, 0.01], and φn is a frequency selected randomly in the
range of [0, 0.1]. The domain in this case was set to −10 < x, y < 10, and one such
function is shown in Fig. 7c. In addition to the results shown in Fig. 3, we further
evaluated the “steeper goes deeper” heuristics by the following steps. Given a test
function, we first segmented selected level sets to two subsets—the one that belonged
to the global BOA (cf. Sect. 2) and the second that complemented it. In each subset,
we located the point of maximum gradient magnitude, with pg denoting the point
of maximum gradient in the global BOA and pl the corresponding point in the local
BOAs. Finally, we compared the gradient magnitude between these two points. If our
heuristics is sound, the gradient magnitude at pg should be greater than pl more often
than not.

More formally, we examined the distribution of the values in the function

Φ(Ls) = ∥∥∇ f (pg)
∥∥ − ‖∇ f (pl)‖ , (17)

where Ls denotes a level set for which we identify the two points

pg = argmax
p

||∇ f (p)|| subject to { f (p) = Ls , p ∈ global BOA } (18)

pl = argmax
p

||∇ f (p)|| subject to { f (p) = Ls , p /∈ global BOA } . (19)

If our heuristics is sound, Φ(Ls) should be biased toward positive values (Fig. 8).
Figure 9 presents the histogram of the Φ values taken from 5 different level sets

{20, 30, 40, 60, 80} using 100 different functions in each of the different classes. In
all cases, we clearly find that the “steeper goes deeper” heuristic is significantly more
often valid than not (note the strong bias toward positive values).

Appendix B: Algorithmic Description of Recursive Gradient Surfing
(RGS)

The recursive gradient surfing (RGS) operates on a given function fd from a given
initial guessP0. At the heart of the approach is a progressive reduction in the dimension
of the optimization (until a base dimension is obtained) with a corresponding change
in the objective function. For this reason, the dimension of the optimization d also is
provided as input to the function. A detailed algorithmic description is presented next.
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Algorithm 4 Recursive Gradient Surfing (RGS)
(p1, . . . , pd ) =function RGS(d,P0, fd ) returns estimation of global optimum
if d > 2 then

i ← 0
repeat

i ← i + 1 % Index for current guess in each
% level of the recursion.

Pi ← Pi−1 + α · ∇ fd (Pi−1) % GD step Pi = (p1, p2, . . . , pd−1, pd )i .
Vls ← fd (Pi) % Current level set value.
fd−1 ← −‖∇ fd‖2 % Set the new cost function.
P0,d ← (p1, p2, . . . , pd−1)i % Set new initial guess.
Pi ←RGS (d − 1,P0,d, fd−1) % Decrease the dimensionality of

% the problem until the base
% level of dimension 2.

Find the point of maximal gradient psur fd on the level set Vls

Pi ← P0,d ⊕ psur fd % Change the current guess
% according to the heuristic.

until {Termination conditions for GD method is satisfied}
else{ d=2 base case for 2 dimensions}

Estimate (p1, p2) =GS( fd ,P0) by the 2D Surfing Method.
end if

Apart from the recursive call, a key step in the algorithm is the need to find the point
of maximal gradient on the level set Vls . The level set itself is defined by the rootlike
constraint fd(P0,d⊕ psur fd )−Vls = 0, a one-dimensional problem that may be solved
with any root finding techniques such as Newton Raphson. The corresponding 1D
(non-convex) optimization problem (i.e., the root with maximal gradient magnitude)
may be addressed with many of the tunneling approaches [16]
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